Aplikasi Encoder-Decoder





SISTEM KEAMAN GEMPA BUMI

(Vibration Sensor, Flame Sensor, dan Touch Sensor)

 

1.    Tujuan (DAFTAR ISI)

a.       Mengetahui dan memahami prinsip kerja Vibration Sensor SW420
b.      Mengetahui dan memahami prinsip kerja Flame Sensor
c.       Mengetahui dan memahami prinsip kerja Touch Sensor
d.      Mengetahui dan memaham encoder 74247 dan seven segment
e.       Mengetahui dan memahami prinsip kerja gerbang logika

 

2.    Alat dan Bahan (DAFTAR ISI)

a.      Alat

·      Power Supply

Power supply atau catu daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik maupun elektronika lainnya.

·      Battery

Baterai digunakan pada rangkaian ini berfungsi sebagai sumber energi listrik untuk menjalankan rangkaian.

·      DC Voltmeter

DC Voltemeter merupakan alat ukur yang digunakan untuk mengukur tegangan DC.

 

b.      Bahan

·      Resistor

Resistor merupakan komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika. Tegangan pada suatu resistor sebanding dengan arus yang melewatinya. 

Spesifikasi:

Resistance (Ohms)             : 220 V

Power (Watts)                    : 0,25 W, ¼ W

Tolerance                            : ± 5%

Packaging                           : Bulk

Composition                       : Carbon Film

Temperature Coefficient    : 350ppm/°C

Lead Free Status                : Lead Free

RoHS Status                       : RoHs Complient

 

·      Transistor

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus, stabilisasi tegangan, dan modulasi sinyal. Transistor NPN adalah tipe transistor yang bekerja atau mengalirkan arus negatif dengan positif sebagai biasnya. Transistor NPN mengalirkan arus negatif dari emittor menuju kolektor.

Spesifikasi:

-          DC Current gain(hfe) maksimal 800
-          Arus Collector kontinu(Ic) 100mA
-          Tegangan Base-Emitter(Vbe) 6V
-          Arus Base(Ib) maksimal 5mA
 

·      Relay

Relay adalah komponen yang berfungsi untuk mengalirkan arus listrik yang besar dengan menggunakan kendali listrik arus kecil. Relay memiliki fungsi sebagai saklar atau elektromagnetik switch yang mana dikendalikan oleh magnet listrik.

·      Gerbang Logika AND

Gerbang AND (IC 4081) memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang AND akan mengalikan semua input yang masuk. Sehingga, jika salah satu input berlogika 0 maka outputnya akan berlogika 0.

Spesifikasi:

-         Catu daya                     : 3 V - 15 V

-         Fungsi                           : Quad 2-Input AND Gate

-         Propagation delay         : 55 ns

-         Level tegangan I/O       : CMOS

-         Kemasan                       : DIP 14-pin

·      Motor DC

Digunakan untuk output dari rangkaian dan berjalan jika sensor berlogika 1.

Spesifikasi:

-         Operating temperature  : -10oC – 60oC
-         Rated voltage               : 6.0VDC
-         Rate load                      : 10 g*cm
-         No-load current           : 70 mA max
-         No-load speed              : 9100±1800rpm
-         Loaded current             : 250 A max
-         Loaded speed               : 4500±1500 rpm
-         Starting torque              : 20 g*cm
-         Starting voltage             : 2.0
-         Stall current                  : 500 mA max
-         Body size                      : 27.5mm x 20mm x 15mm
-         Shaft size                      : 8mm x 2mm diameter
-         Weight                          : 17.5 grams

·      Buzzer

Buzzer listrik adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara. Buzzer dapat bekerja dengan baik dalam menghasilkan frekuensi kisaran 1-5 KHz hingga 100 KHz untuk aplikasi ultrasound. Tegangan operasional buzzer yang umumnya berkisar 3-12 V.

·      Vibration Sensor

Sensor Vibration adalah suatu alat yang berfungsi untuk mendeteksi adanya getaran dan akan diubah ke dalam sinyal listrik.

Karakteristik:

-         Tegangan operasi 3,3 V hinggan 5V DC
-         LED menunjukkan keluaran dan daya
-         Desain berbasis LM393
-         Mudah digunakan dengan mikrokontroler atau IC digital/analog normal
-         Dengan lubang baut untuk memudahkan pemasangan.

Datasheet:


·      Flame Sensor

Flame sensor adalah sensor yang dirancang untuk mendeteksi dan menanggapi keberadaan api dan memungkinkan mendeteksi api. yang dimana api tersebut memiliki panjang gelombang antara 760nm – 1100nm.

Spesifikasi:

-         Tegangan operasi antara 3,3 – 5 Vdc
-         Terdapat 2 output yaitu digital output dan analog output yang berupa tegangan
-         Sudah terpackage dalam bentuk modul
-         Terdapat potensiometer sebagai pengaturan sensitivitas sensor dalam mensensing

Datasheet:


·      Touch Sensor

Sensor sentuh mendeteksi sentuhan atau jarak dekat tanpa mengandalkan kontak fisik. Sensor sentuh membuat jalan mereka ke banyak aplikasi seperti ponsel, remote control, panel control, dll. Sensor sentuh saat ini dapat menggantikan tombol dan sakelar mekanis.

Datasheet:


·      Decoder (IC 74247)

IC 74247, merupakan IC TTL Decoder BCD to 7 Segment. IC ini berfungsi untuk mengubah kode bilangan biner BCD (Binary Coded Decimal) menjadi data tampilan untuk penampil/display 7 segment yang bekerja pada tegangan TTL (+5volt DC).

·      Seven Segment

Seven segment adalah salah satu perangkat layar untuk menampilkan sistem angka desimal yang merupakan alternatif dari layar dot-matrix. Layar tujuh segmen ini sering kali digunakan pada jam digital, meteran elektronik, dan perangkat elektronik lainnya yang menampilkan informasi numerik. 

3.    Dasar Teori (DAFTAR ISI)

a.      Resistor

Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.

Satuan Resistor adalah Ohm (simbol: Î©) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.

Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.

Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.

Simbol dari resistor merupakan sebagai berikut :

Cara Menghitung Nilai Resistor

Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.

1)   Berdasarkan Kode Warna

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.

Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.

Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor:

-       4 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
        Gelang ke 1 : Coklat = 1
        Gelang ke 2 : Hitam = 0
        Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
        Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

-       5 Gelang Warna

Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
        Gelang ke 1 : Coklat = 1
        Gelang ke 2 : Hitam = 0
        Gelang ke 3 : Hijau = 5
        Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
        Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

Contoh-contoh perhitungan lainnya :

Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi

Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi

Cara menghitung Toleransi :

2.200 Ohm dengan Toleransi 5% = 2200 – 5% = 2.090

2200 + 5% = 2.310

ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm

Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut:

HI CO ME O KU JAU BI UNG A PU

(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)

2)   Berdasarkan Kode Angka

Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)

Contoh :

Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;

Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :

Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)

Contoh-contoh perhitungan lainnya :

222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm

Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :

Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan

b.      Transistor

Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal, stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Pada rangkaian kali ini digunakan transistor 2SC1162 bertipe NPN. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor  yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis  melebihi arus pada kaki kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff  (saklar tertutup).

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

-        Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
-   Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
-     Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.

KarakteristikI/O:

Grafik Respon:

c.       Relay

Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

-       Electromagnet (Coil)
-       Armature
-       Switch Contact Point (Saklar)
-       Spring

Gambar bagian-bagian relay:

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

-   Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
-   Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Konfigurasi relay:

d.      Gerbang Logika AND

Gerbang AND akan berlogika 1 apabila semua inputnya berlogika 1, namun bila salah satu atau semua keluarannya berlogika 0 maka keluarannya berlogika 0. Perhatikan Tabel kebenaran dibawah untuk menjelaskan gerbang AND.

Tabel Kebenaran :

e.       Motor DC

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

Prinsip kerja motor DC:

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

f.        Buzzer

Buzzer listrik adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara.

Simbol:

Buzzer dapat bekerja dengan baik dalam menghasilkan frekuensi kisaran 1-5 KHz hingga 100 KHz untuk aplikasi ultrasound. Tegangan operasional buzzer yang umumnya berkisar 3-12 V.

Spesifikasi:

Cara Kerja Buzzer

Tegangan Listrik yang mengalir ke buzzer akan menyebabkan gerakan mekanis, gerakan tersebut akan diubah menjadi suara atau bunyi yang dapat didengar oleh manusia.

g.      Vibration Sensor

Sensor vibrasi SW420 adalah suatu alat yang berfungsi untuk mendteksi adanya getaran dan akan diubah ke sinyal listrik. cara kerja sensor ini dengan menggunakan satu buah pelampung logam yang akan bergetar di tabung yang berisi 2 elektroda ketika sensor menerima getaran. Terdapat 2 output digital (0 dan 1) dan analog output.

Karakteristik Sensor Vibrasi SW420

-          Tegangan operasi 3,3 V hinggan 5V DC

-          LED menunjukkan keluaran dan daya

-          Desain berbasis LM393

-          Mudah digunakan dengan mikrokontroler atau IC digital/analog normal

-          Dengan lubang baut untuk memudahkan pemasangan

Grafik respon:

h.      Flame Sensor

Flame Sensor sensitiv terhadap api dan radiasi. Biasanya digunakan pada rangkaian alarm kebakaran atau kejuaraan robot pendeteksi kebakaran. Dapat mendeteksi cahaya dengan panjang gelombang dalam jarak tertentu.

Spesifikasi:

-        Mendeteksi cahaya dengan rentang panjang gelombang 760-1100 nm

-        Jarak deteksi           : 20cm (4.8V) hingga 100 cm (1V)

-        Sudut deteksi          : 60°

-        Tegangan operasi    : 3.3-5V

-        Tegangan keluaran : analog

Respons terhadap nyala api yang terdeteksi bergantung pada pemasangan, tetapi dapat mencakup membunyikan alarm, menonaktifkan saluran bahan bakar (seperti propana atau saluran gas alam), dan mengaktifkan sistem pencegah kebakaran. Ketika digunakan dalam aplikasi seperti tungku industri, perannya adalah untuk memberikan konfirmasi bahwa tungku bekerja dengan benar; dalam hal ini mereka tidak melakukan tindakan langsung di luar memberi tahu operator atau sistem kontrol. Detektor api seringkali dapat merespon lebih cepat dan lebih akurat daripada detektor asap atau panas karena mekanisme yang digunakan untuk mendeteksi nyala api.

Grafik respon sensor:

Temperatur terus naik akibat proses perpindahan kalor melalui udeara sehingga sensor dapat menyerap kalor yang di pancarkan oleh api sehingga semakin lama api menyala semakin panas temperatur pada ruangan tersebut . dan disini semakin dekat jarak sensor dengan api maka semakin tinggi yang dibaca oleh alat ukur sensor begitu sebaliknya jika semakin jauh sensor dengan jarak api maka pembacaan oleh alat ukur maka kecil.

i.      Touch Sensor

Tubuh manusia memiliki Panca Indera yang berfungsi untuk berinteraksi dengan lingkungan di sekitarnya. Konsep yang sama juga diterapkan pada mesin atau perangkat elektronik/listrik agar dapat melakukan interaksi dengan lingkungan disekitarnya. Oleh karena itu, berbagai jenis sensor pun diciptakan untuk melakukan tugas tersebut. Salah satu sensor tersebut adalah Sensor Sentuh atau Touch Sensor.

Seperti namanya, Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.

Grafik Sensor :

j.     Decoder

IC BCD 74247 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 74247 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. 

IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 74247.

Konfigurasi Pin Decoder:

-       Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C  dan D. Pin input berkeja dengan logika High=1.

-     Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.

-  Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low, sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.

-     Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

-    Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

Pada aplikasi IC dekoder 74247, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 74247 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.

k.      Seven Segment

Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.

Tabel Pengaktifan Seven Segment Display

4.  Prosedur Percobaan (DAFTAR ISI)

a.       Buka aplikasi proteus
b.       Siapkan alat dan bahan pada library proteus
c.      Pilih komponen yang dibutuhkan komponen dioda, resistor, sensor vibrasi sw420, flame sensor,   touch sensor, gerbang logika AND, ground, buzzer, logicstate.
d.       Rangkai setiap komponen menjadi rangkaian yang diinginkan 
e.       Ubah spesifikasi komponen sesuai kebutuhan
f.        Jalankan simulai rangkaian

5.  Rangkaian Simulasi (DAFTAR ISI)

Sebelum Simulasi

Setelah Simulasi

6.  Vidio Simulasi (DAFTAR ISI)

        Prinsip Kerja :

Apabila vibrasi sensor, flame sensor, dan touch sensor tidak mendeteksi getaran dan percikan api yaitu ketiga sensor berlogika 0, maka output pada sensor sebesar 0-0.5 V akan diteruskan ke pin A, pin B, dan pin C 74247 sehingga seven segmen akan menampilkan angka 0 sebagai tanda bahwa ketiga sensor tidak ada menedeteksi apapun.

Apabila sensor vibrasi mendeteksi adanya getaran yaitu sensor berlogika 1 maka output sensor sebesar 5 V diteruskan ke pin A 74247 sehinnga seven segmen akan menampilkan angka 1 yang menandakan sensor vibrasi aktif. Kemudian output sensor sebesar 5V juga diteruskan ke gerbang AND maka input pada gerbang AND yaitu 1:1 sehingga output pada gerbang AND yaitu 1 lalu diteruskan ke resistor kemudian tegangan sebesar 0.87 V diteruskan ke transistor sehingga transistor aktif. Karena Q1 on maka ada arus dari batterai menuju relay sehingga relay aktif sehingga switch relay berpindah ke kiri dan relay on. dari relay arus mengalir ke kaki kolektor Q1 menuju ke emitor dan ke ground. Karena relay on maka arus mengalir ke battray dan dari baterai masuk ke buzer sehingga buzer aktif.

Apabila flame sensor mendeteksi adanya percikan api yaitu sensor berlogika 1 maka output sensor sebesar 5V diteruskan ke pin B 74247 sehinnga seven segment akan menampilkan angka 2 yang menandakan sensor flame aktif. Kemudian output sensor sebesar 5V juga diteruskan ke gerbang AND maka input pada gerbang AND yaitu 1:1 sehingga output pada gerbang AND yaitu 1 lalu diteruskan ke resistor kemudian tegangan sebesar 0.87 V diteruskan ke transistor sehingga transistor aktif. Karena Q2 on maka ada arus dari batterai menuju relay sehingga relay aktif sehingga switch relay berpindah ke kiri, dari relay arus mengalir ke kaki kolektor Q2 menuju ke emitor dan ke ground. Karena relay on dan switchnya berpindah ke kiri, arus mengalir ke battray dan dari batrai masuk ke motor sehingga motor aktif dan kran air terbuka.

Saat touch sensor mendeteksi adanya sentuhan yaitu sensor berlogika 1 maka output sensor sebesar 5V diteruskan ke gerbang AND lalu diteruskan ke resistor kemudian tegangan sebesar 0.87 V diteruskan ke transistor sehingga transistor aktif. Karena Q3 on maka ada arus dari batterai menuju relay sehingga relay aktif sehingga switch relay berpindah ke kiri, dari relay arus mengalir ke kaki kolektor Q3 menuju ke emitor dan ke ground. Karena relay on dan switchnya berpindah ke kiri, arus mengalir ke battray dan dari batrai masuk ke motor sehingga motor aktif dan pintu terbuka.

Apabila sensor vibrasi, sensor flame, dan touch sensor aktif maka output dari sensor vibrasi, sensor flame, dan touch sensor akan diteruskan ke pin A, pin B, dan pin C 74247 sehingga seven segment akan menampilkan angka 7 yang menandakan ketiga sensor aktif sehingga output dari ketiga sensor sebesar 5V diteruskan ke gerbang AND U2, U3, dan U4 lalu diteruskan ke transistor karena transistor on maka ada ada arus dari batterai masuk ke relay sehingga relay aktif dan switch pada relay berpindah ke kiri dari relay arus mengalir ke kaki kolektor menuju ke emitor dan ke ground . Karena relay on maka arus mengalir ke motor dan buzer sehingga motor dan buzer aktif.

7. Link Download (DAFTAR ISI)

Menuju Awal

0 komentar:

Posting Komentar